Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The Spatial Data Lab (SDL) project is a collaborative initiative by the Center for Geographic Analysis at Harvard University, KNIME, Future Data Lab, China Data Institute, and George Mason University. Co-sponsored by the NSF IUCRC Spatiotemporal Innovation Center, SDL aims to advance applied research in spatiotemporal studies across various domains such as business, environment, health, mobility, and more. The project focuses on developing an open-source infrastructure for data linkage, analysis, and collaboration. Key objectives include building spatiotemporal data services, a reproducible, replicable, and expandable (RRE) platform, and workflow-driven data analysis tools to support research case studies. Additionally, SDL promotes spatiotemporal data science training, cross-party collaboration, and the creation of geospatial tools that foster inclusivity, transparency, and ethical practices. Guided by an academic advisory committee of world-renowned scholars, the project is laying the foundation for a more open, effective, and robust scientific enterprise.more » « lessFree, publicly-accessible full text available December 1, 2026
- 
            In this paper, we propose a paradigm for atom interferometry and demonstrate that there exists a universal set of atom optic components for inertial sensing. These components constitute gates with which we carry out quantum operations and represent input-output matter wave transformations between lattice eigenstates. Each gate is associated with a modulation pattern of the position of the optical lattice according to machine-designed protocols. In this methodology, a sensor can be reprogramed to respond to an evolving set of design priorities without modifying the hardware. We assert that such a gate set is metrologically universal, in analogy to universal gate sets for quantum computing. Experimental confirmation of the designed operation is demonstrated via imaging of the spatial evolution of a Bose-Einstein condensate in an optical lattice and by measurement of the momentum probabilities following time-of-flight expansion. The representation of several basic quantum sensing circuits is presented for the measurement of inertial forces, rotating reference frames, and gravity gradients. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
- 
            Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one-dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wave function at many stages during its cycle. An acceleration signal is applied, and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract Maintaining educational resources and training materials as timely, current, and aligned with the needs of students, practitioners, and other users of geospatial technologies is a persistent challenge. This is particularly problematic within CyberGIS, a subfield of Geographic Information Science and Technology (GIS&T) that involves high‐performance computing and advanced cyberinfrastructure to address computation‐ and data‐intensive problems. In this study, we analyzed and compared content from two open educational resources: (1) a popular online web resource that regularly covers CyberGIS‐related topics (GIS Stack Exchange) and (2) existing and proposed content in the GIS&T Body of Knowledge. While current curricula may build a student's conceptual understanding of CyberGIS, there is a noticeable lack of resources for practical implementation of CyberGIS tools. The results highlight discrepancies between the attention and frequency of CyberGIS topics according to a popular online help resource and the CyberGIS academic community.more » « less
- 
            Estimating a quantum phase is a necessary task in a wide range of fields of quantum science. To accomplish this task, two well-known methods have been developed in distinct contexts, namely, Ramsey interferometry (RI) in atomic and molecular physics and quantum phase estimation (QPE) in quantum computing. We demonstrate that these canonical examples are instances of a larger class of phase estimation protocols, which we call reductive quantum phase estimation (RQPE) circuits. Here, we present an explicit algorithm that allows one to create an RQPE circuit. This circuit distinguishes an arbitrary set of phases with a smaller number of qubits and unitary applications, thereby solving a general class of quantum hypothesis testing to which RI and QPE belong. We further demonstrate a tradeoff between measurement precision and phase distinguishability, which allows one to tune the circuit to be optimal for a specific application. Published by the American Physical Society2024more » « less
- 
            We present a simple and effective method to create highly entangled spin states on a faster timescale than that of the commonly employed one-axis twisting (OAT) model. We demonstrate that by periodically driving the Dicke Hamiltonian at a resonance frequency, the system effectively becomes a two-axis countertwisting Hamiltonian, which is known to quickly create Heisenberg limit scaled entangled states. For these states we show that simple quadrature measurements can saturate the ultimate precision limit for parameter estimation determined by the quantum Cramér-Rao bound. An example experimental realization of the periodically driven scheme is discussed with the potential to quickly generate momentum entanglement in a recently described experimental vertical cavity system. We analyze effects of collective dissipation in this vertical cavity system and find that our squeezing protocol can be more robust than the previous realization of OAT. Published by the American Physical Society2024more » « less
- 
            ABSTRACT GIS and GIScience education have continually evolved over the past three decades, responding to technological advances and societal issues. Today, the content and context in which GIScience is taught continue to be impacted by these disruptions, notably from technology through artificial intelligence (AI) and society through the myriad environmental and social challenges facing the planet. These disruptions create a new landscape for training within the discipline that is affecting not onlywhatis taught in GIScience courses but alsowhois taught,whyit is being taught, andhowit is taught. The aim of this paper is to structure a direction for developing and delivering GIScience education that, amid these disruptions, can generate a capable workforce and the next generation of leaders for the discipline. We present a framework for understanding the various emphases of GIScience education and use it to discuss how the content, audience, and purpose are changing. We then discuss how pedagogical strategies and practices can change how GIScience concepts and skills are taught to train more creative, inclusive, and empathetic learners. Specifically, we focus on how GIScience pedagogy should (1) center on problem‐based learning, (2) be open and accelerate open science, and (3) cultivate ethical reasoning and practices. We conclude with remarks on how the principles of GIScience education can extend beyond disciplinary boundaries for holistic spatial training across academia.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Large ensembles of laser-cooled atoms interacting through infinite-range photon-mediated interactions are powerful platforms for quantum simulation and sensing. Here we realize momentum-exchange interactions in which pairs of atoms exchange their momentum states by collective emission and absorption of photons from a common cavity mode, a process equivalent to a spin-exchange or XX collective Heisenberg interaction. The momentum-exchange interaction leads to an observed all-to-all Ising-like interaction in a matter-wave interferometer. A many-body energy gap also emerges, effectively binding interferometer matter-wave packets together to suppress Doppler dephasing in analogy to Mössbauer spectroscopy. The tunable momentum-exchange interaction expands the capabilities of quantum interaction–enhanced matter-wave interferometry and may enable the realization of exotic behaviors, including simulations of superconductors and dynamical gauge fields.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
